20PEB332E					Corrosion Studies in Petroleum Industry					
Teaching Scheme					Examination Scheme					
	-	Р	с	Hrs/Week	Theory			Practical		Total
1					MS	ES	IA	LW	LE/Viva	Marks
2	0	0	2	2	25	50	25			100

COURSE OBJECTIVES

- To acquire the basic concept of corrosion mechanism and forms of corrosion
- \geq To acquire the concept of corrosion testing
- To acquire the concept of the modern theory of corrosion
- \geq To understand the basic mechanism and procedure of corrosion testing and prevention

UNIT 1

Corrosion fundamentals, Corrosion in oil Industry, Cost of corrosion in the industry, Corrosivity of hydrocarbon fluids:- Water-oil emulsion and multiphase flow regime, Wettability of metal surface., Corrosivity of aqueous phase in hydrocarbon fluids; Sulphur and H2S in hydrocarbon fluids; Influence of oil chemistry on the Corrosivity of the aqueous phase. Pipeline corrosion; Kinetics of electrochemical surface reactions; Cathodic reduction reactions; Anodic dissolution reactions; Transport of species; Transport from the bulk solution to the steel surface; Transport through the porous surface scales. Corrosion products; Kinetics of corrosion products precipitation and corrosion products growth; 7 Hrs.

UNIT 2

Modes of internal corrosion attack: -Uniform corrosion; Localized corrosion ; Pitting corrosion; Erosion corrosion; Galvanic corrosion; Intergranular corrosion; Stress corrosion cracking; Hydrogen damage; hydrogen embrittlement; Hydrogen-induced cracking; Formation of hydride. Pipeline flow Corrosivity: Effect of water wetting; Effect of multiphase flow regime; Effect of multiphase velocity ; Effect of water phase characteristics; Significance of salinity; Significance of CO2 pressure; Significance of H2S; Significance of O2; Significance of pH; Effect of temperature. Materials selection:-Significance of alloying composition; Significance of steel microstructure.

UNIT 3

Experimental setups, methods, and standards:- Multiphase flow loop; Autoclave; Horizontal rotating cylinder; High velocity rig; Glass cell; Goniometer/Tensiometer ; Moisture content measurements ; Slow strain rate test. Corrosivity and corrosion rate determination:- Weight loss measurements; Potentiodynamic polarization and polarization resistance; Electrochemical impedance spectroscopy; Potentiostatic polarization; 6 Hrs.

UNIT 4

Pipeline Corrosion control; Environment control; Gas-phase contaminants and degasification; Water presence and dehydration/dewatering; Pipe cleaning; Pigging; Internal coating/liner; Chemical treatment and corrosion inhibitors:-Corrosion control by industrial inhibitors, Application methods; Influence of operating conditions; Solubility, partitioning, and compatibility. **Biocides**

Max. 26 Hrs.

6 Hrs.

COURSE OUTCOMES

On completion of the course, student will be able to

- **CO-1:** understand the basic mechanism of corrosion process
- CO-2: classify corrosion into different types and forms
- **CO-3:** illustrate the influencing factors of pipeline corrosion
- **CO-4:** demonstrate the procedure of corrosion testing
- CO-5: explain the modern theory of corrosion based on thermodynamic and kinetics study

CO-6: interpret the preventive measures of corrosion in oil and gas industry

TEXT/REFERENCE BOOKS

- 1. Papavinasam, S (2013) Corrosion control in oil and gas industry, Elsevier.
- 2. Cicek, Volkan. "Corrosion in Petroleum Industry." Cathodic Protection: Industrial Solutions for Protecting Against Corrosion: 231-245.
- Nathan, Charles Carb. "Corrosion inhibitors." C. C. Nathan, Editor, published 1973 by NACE, 260 (1973). 3.

END SEMESTER EXAMINATION QUESTION PAPER PATTERN Max Markey 100

Max. Marks: 100	Exam Duration: 3 Hrs
Part A/Question: <short notes,="" numericals="" problems,=""></short>	<5-7 > Marks (each)
Part B/Question: <justification, answers,="" criticism,="" interpretation="" long=""></justification,>	<8-10> Marks (each)

7 Hrs.